

The Japanese 55-year Reanalysis JRA-55

--- progress and status ---

<u>Y.Harada</u>, <u>S.Kobayashi</u>, Y.Ota, S.Yasui, A.Ebita, M.Moriya, H.Onoda, <u>K.Onogi</u>, <u>H.Kamahori</u>, <u>C.Kobayashi</u>, <u>H.Endo</u>, K.Miyaoka, R.Kumabe, and K.Takahashi Japan Meteorological Agency (JMA)

<u>Underlined names</u> are attendees of this conference.

4th WCRP International Conference on Reanalysis

Japanese Reanalysis

- 1st JRA-25
 - By JMA and CRIEPI

 CRIEPI : Central Research Institute of Electric Power Industry

2nd **JRA-55**

By JMA

Nickname of JRA-55

→ JRA Go! Go!

JRA-25 (ni-go)

- 1. JRA-55 Reanalysis system
 - Data assimilation and forecast system
 - Observation
 - Production streams
- 2. Early results
- 3. JRA-55 family
- 4. Information and Summary

1. JRA-55 Reanalysis System

	JRA-25	JRA-55		
Reanalysis years	1979-2004 (26 years)	1958-2012 (55 years)		
Equivalent operational NWP system	As of Mar. 2004	As of Dec. 2009		
Resolution	T106L40 (~120km) <i>(top layer at 0.4 hPa)</i>	T∟319L60 (~60km) <i>(top layer at 0.1 hPa)</i>		
Time integration	Eularian	Semi-Lagrangian		
Assimilation scheme	3D-Var	4D-Var (with T106 inner model)		
Bias correction (satellite radiance)	Adaptive method (Sakamoto et al. 2009)	Variational Bias Correction (Dee et al. 2009)		
Tropical Cyclone	Wind profile retrievals (TCRs) provided by Dr.Fiorino were assimilated.	Same as JRA-25		

	JRA-25	JRA-55
Radiatively active gases	H ₂ O, CO ₂ , O ₃	H ₂ O, CO ₂ , O ₃ , CH ₄ , N ₂ O, CFC-11, CFC-12, HCFC-22
GHG concentrations	Constant at 375 ppmv (CO ₂)	Annual mean data are interpolated to daily data (CO2,CH4,N2O)
Ozone	Daily 3-D ozone (produced by AED/JMA)	(-1978) Monthly climatology (1979-) New daily 3-D ozone (produced using a revised CTM)
Aerosols	Annual climatology for continental and maritime aerosols	Monthly climatology for continental and maritime aerosols
SST Sea ice	COBE SST (Ishii <i>et al.</i> , 2005, <i>I.J.Clim.</i>)	COBE SST (ver. 1.5)

Observational data used in JRA-55

SYNOP, SHIP and BUOY						
Snow depth over Russia, Mongol and USA**						
Digitized si	now depth over Chin	a**				
Radiosondes, pilot balloons an	d wind profilers					
Tropical cyclone wind retrievals	S**					
Aircra	ft					
PAOE	S					
IR sou	inders*					
	MW sounders					
	M	<i>N</i> imagers*				
			GOES*			
Convertional			METEOSAT*			
Conventional		GMS and MTSAT	(reprocessed)**			
Satellite radiances	GOES					
AMV	METEOSAT (rep	processed)*				
New types of sat obs	GMS and MTSA	T (reprocess	sed)**			
** First time for reanalyses			MODIS			
* Improved from or added to		Scat	tterometers			
JRA-25			GPSRO*			
$\vdash \bullet \downarrow \bullet $		1				

Available Reprocessed AMV and CSR data

Thick line : reprocessed period

Height assignment of Operational AMVs used in ERA-15 (ERA-15 (ERA-15 Report 3, Uppala, 1997)

- Analysis quality largely depends on the background error covariance matrix B when/where observational data quantity is small.
- Estimation of background error statistics for nosatellite years is required.
- Experimental DA cycle without satellite data was performed to estimate the effect of sat. data.
- "1.8 times larger background error" gives the best performance.
 - 1.8 : appropriate scaling factor
 - 1.8 x **B** is used for "no satellite" years.

Background Error estimation for no-satellite years (Z500: Experiment for March 1991)

Completed periods as of 1 May, 2012

JRA-55 will be completed in the spring of 2013.

2. Early results of JRA-55

Red line is JRA-55 in the following graphs. Note that only completed years are plotted. Improvement of vertical temperature profiles

Vertical profiles of global mean bias and RMS difference between radiosonde temperature measurements and the background (solid lines) / analyzed fields (dotted lines) from JRA-25 (black) and JRA-55 (red) in January 1981.

Go!

Zonal Mean Precipitation

Precipitation in the tropics

Dry

Goi

Water budget in Amazon

Correlation and standard deviation with GPCP.

Tropical Cyclone

200

300

400

500

600

700

800 -

900 ·

1000 -

Annual global TC detection rate (%) for 1980-1998

(%)	WP	EP	AT	NI	SI	SP	GL
JRA-55	93	92	90	84	94	95	93
JRA-25	88	98	98	72	82	85	89
ERA-Int	76	37	67	56	64	73	65

XZ-cross section for TC temperature anomaly in WP

Detection criterion of this study is taken from Hatsushika et al.(2006), JMSJ

Ref. Poster AT-26 (Dr. H. Kamahori)

3. JRA-55 Family

JRA-55

JRA-55C

JRA-55AMIP

Purpose

- JRA-55C and JRA-55AMIP are conducted;
 - to retain consistency throughout the years.
 - to detect climate change signals among less observation system changes.
 - to be compared with JRA-55.

Usefulness

- JRA-55C
 - Influences by satellite data changes are checked.
- JRA-55AMIP
 - Basic features of the forecast model used in JRA-55 are confirmed.

Equatorial (5S-5N) zonal mean U-wind time series from 1958-1997 [m s⁻¹]

Precipitation anomaly of JRA-55 and JRA-55AMIP against GPCP

Precipitation in the tropics

4. Information and Summary

- Spring 2013
 - JRA-55 calculation will be completed.
- Autumn 2013
 - JRA-55 products will be released for research use.
 - Basic products of JRA-55C and JRA-55AMIP will be released as well but it may be delayed.
- Spring 2014
 - JRA-55 based JCDAS will be released.
 - Note that current JRA-25 based JCDAS will be replaced.
 - JCDAS: JMA Climate Data Assimilation System

- We are concentrating on JRA-55 now.
- Details of the next JRA plan has not been discussed yet.
- Basic strategy of the JMA reanalysis will be introduced in the panel discussion on Friday.

- Ebita et al. 2011
 - Ayataka Ebita, Shinya Kobayashi, Yukinari Ota, Masami Moriya, Ryoji Kumabe, Kazutoshi Onogi, Yayoi Harada, Soichiro Yasui, Kengo Miyaoka, Kiyotoshi Takahashi, Hirotaka Kamahori, Chiaki Kobayashi, Hirokazu Endo, Motomu Soma, Yoshinori Oikawa and Takahisa Ishimizu;
 - "The Japanese 55-year Reanalysis "JRA-55": An Interim Report", SOLA, Vol. 7, pp.149-152 (2011).
 - https://www.jstage.jst.go.jp/article/sola/7/0/7_0_149/_article

- Mr. Shinya KOBAYASHI (JMA Hq.) (Oral on Thursday: Remote Sensed Observation)
 Use of the reprocessed GMS/MTSAT data in JRA-55
- Ms. Yayoi HARADA (JMA Hq.) (Poster AT-18)
 - Verification of the Japanese 55-year Reanalysis "JRA-55" quality focused on the various time scale variability of the stratospheric temperature and the atmospheric flow on the isentropic surface in the troposphere
- Dr. Hirotaka KAMAHORI (MRI/JMA) (Poster AT-26)
 - Tropical Cyclones Represented in JRA-55
- Ms. Chiaki KOBAYASHI (MRI/JMA) (Poster AT-30)
 - Introduction and Early Results of JRA-55C: Subset of JRA-55

- Mr. Toshiyuki ISHIBASHI (MRI/JMA) (Oral on Wednesday: Data Assimilation)
 - Diagnosis of Data Assimilation Systems: Observation Impact Estimation, Error Covariance Matrix Optimization, and Analysis Error Estimation
- Mr. Hirokazu ENDO (MRI/JMA) (Poster UA-13)
 - Long-term variations of circulation in East Asian summer during the past half century

- Improvements from JRA-25
 - Significantly reduced cold bias in the lower stratosphere owing to the improved radiation process
 - Much smoother atmospheric flow
 - Improved quality of precipitation over land
 - Reduced dry bias over the Amazon basin
 - Much better forecast performance
- Deficiencies that still exist in JRA-55
 - Overestimation of precipitation in the tropics
 - We are aware of the necessity to improve the convection scheme.

